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ABSTRACT
WHO’s report on environmental noise estimates that 22 M
people suffer from chronic annoyance related to noise caused
by audio events (AEs) from various sources. Annoyance may
lead to health issues and adverse effects on metabolic and cog-
nitive systems. In cities, monitoring noise levels does not pro-
vide insights into noticeable AEs, let alone their relations to
annoyance. To create annoyance-related monitoring, this pa-
per proposes a graph-based model to identify AEs in a sound-
scape, and explore relations between diverse AEs and human-
perceived annoyance rating (AR). Specifically, this paper pro-
poses a lightweight multi-level graph learning (MLGL) based
on local and global semantic graphs to simultaneously per-
form audio event classification (AEC) and human annoyance
rating prediction (ARP). Experiments show that: 1) MLGL
with 4.1 M parameters improves AEC and ARP results by
using semantic node information in local and global context-
aware graphs; 2) MLGL captures relations between coarse-
and fine-grained AEs and AR well; 3) Statistical analysis of
MLGL results shows that some AEs from different sources
significantly correlate with AR, which is consistent with pre-
vious research on human perception of these sound sources.

Index Terms— Noise, annoyance, audio event classifica-
tion, annoyance rating prediction, multi-level graph learning

1. INTRODUCTION
World Health Organization (WHO) reports that environmen-
tal noise is the second cause of ill health in Europe after
air pollution [1]. WHO hereby considers that severe an-
noyance can lead to cardiovascular disease [2] and reduced
quality of life, with annoyance being an important pathway
between noise and long-term health effects. Noticed audio
events (AEs) may play a vital role in the emergence of annoy-
ance [3]. Although most epidemiological studies guided by
[4] consider a single type of sound source, different sounds
occur together in real life, and a person’s annoyance rat-
ing (AR) will be affected by the combined effect of sound
sources. Thus, this paper links audio event classification
(AEC) [5] and annoyance rating prediction (ARP) [6]. AEC
aims to determine whether there are predefined AEs in the
soundscape, while ARP aims to predict the overall human-
perceived AR. We are aware of the large gap between human
AR in different environments, but we see our efforts as a

first step towards deploying long-term monitoring of adverse
effects of environmental sound.

Most deep learning-based AEC-related studies focus on
AE detection and classification, such as works in the detec-
tion and classification of acoustic scenes and events (DCASE)
challenges [7]. In AEC tasks, mel spectrograms are fed into
neural networks, such as CNN [8] and CRNN [9], to extract
acoustic representations to classify audio clips. Recently,
with the aid of large-scale datasets, e.g. AudioSet [10], and
pre-trained audio models (such as PANNs [8] and AST [11]),
deep learning-based models have achieved widespread suc-
cess in AEC tasks. However, most AEC studies mentioned
above focus only on the accuracy of AEs recognition, but
have not explored the perceptual experiences that these AEs
and their combinations bring to people. One of the reasons for
this might be that challenges, like DCASE, do not address this
aspect. For applications like monitoring for health effects and
urban planning, the perception and understanding of acoustic
environments become important, and AE recognition plays
a vital role [12][3]. Emotions elicited directly by the sound
or by the meaning given to it (the recognition) have multiple
dimensions, but for the assessment of health effects, recent
research mostly focuses on annoyance [13]. To simplify their
approach, researchers often only use coarse-grained audio
events (cAE) labels to roughly distinguish between human,
natural, and mechanical sounds. However, humans use more
detailed and specific fine-grained audio events (fAE) infor-
mation when understanding the sound environment [3].

To extend AEC focusing on AEs to ARP on human
perceptions, a hierarchical graph representation learning
(HGRL) [6] has been developed recently on the DeLTA
[14] dataset, the only publicly available dataset that contains
both AE labels and AR. However, HGRL has shortcomings:
1) HGRL has no corresponding semantic supervision when
extracting node representations to build the graph. This leads
to difficulties in specifying each node’s semantics. 2) HGRL
focuses on coarse-grained global information while ignoring
fine-grained local information, as it uses all nodes to build
a global graph. 3) The HGRL model has 92.3M parame-
ters (params), which may be difficult to meet requirements
in some practical applications with limited resources, e.g.
edge devices. To this end, this paper proposes a lightweight
attention-fused multi-level graph learning (MLGL) model



Fig. 1: The proposed lightweight attention-fused multi-level graph learning (MLGL).

with local and global semantic graphs based on nodes with
explicit semantic information, which facilitates the modelling
of a global graph using multiple local context-aware graphs.

The contributions are as follows: 1) Compared to HGRL,
the MLGL provides higher explainability for its reliance on
local and global context-aware graphs. 2) The MLGL, based
on graph neural networks that capture the relations between
nodes well, outperforms CNN-based models. Visual analy-
ses show that MLGL better captures relations between multi-
grained AEs, and relations between AEs and AR. 3) Statisti-
cal analysis of the MLGL results shows that AEs from some
sources significantly correlate with AR, which is consistent
with human perception of these environmental sound sources.

2. LOCAL AND GLOBAL CONTEXT-AWARE MLGL

In this section, we first present how to extract node represen-
tations with explicit semantic information, then use semantic
nodes to build local context-aware graphs (LcGs). Next, we
fuse nodes from multiple LcGs by attention mechanism to
enhance common objective representations of the same node
in different local contexts. Finally, we construct the global
context-aware graph (GcG) with attention-enhanced nodes,
which captures nodes’ representation and relations from the
global view. We illustrate the idea with the help of labels of 24
types of fine-grained AEs (fAEs), 7 types of coarse-grained
AEs (cAEs), and human-annotated AR in DeLTA [14].

2.1. Semantic node representation
In Fig. 1, MLGL uses three 3-layer VGG-like CNNs [15] to
extract representations for sound-related fAEs, cAEs, and hu-
man emotion-related AR, respectively. This enables MLGL
to learn semantic representations of each target, which is
different from HGRL [6] where a shared 6-layer CNN is
used to extract the mixed representations of 3 targets (fAEs,
cAEs, and AR). Then, the extracted representations are fed
into the corresponding embedding block, each consisting
of multiple parallel 64-dimensional embedding (64D Emb)
layers, to obtain the semantic representations for each tar-
get. Unlike HGRL, which has no semantic supervision for
nodes in extracting their representations, MLGL ensures that
the Emb layer only learns the semantic representation of its

target, which is followed by a 1-unit linear layer and a loss
function to convert its output to the target prediction. Given
that the labels of fAE, cAE, and AR are yf24, yc7, and yar,
respectively, the losses at level 1 are L1=BCE(pl1f24, yf24),
L2=MSE(pl1ar, yar), L3=BCE(pl1c7, yc7), where BCE is
the binary cross entropy loss, MSE is the mean squared error
loss, pl1f24, pl1ar, and pl1c7 are predictions of fAE, cAE, and
AR at level 1, respectively. The 64D Emb of each target is
viewed as the semantic representation of each node, which is
then used to construct different LcGs at level 2.

2.2. Local context-aware graphs (LcGs)

Based on the obtained node representations, we construct 3
LcGs with different motives: 1) fAG: fAEs-AR graph; 2)
fcG: fAEs-cAEs graph; 3) cAG: cAEs-AR graph. Among
them, the pure AE-based graph fcG aims to model the rela-
tions between the 24 classes of fAEs and higher-level cAEs,
and use the contexts of AEs in different granularity to im-
prove the node representations. In contrast, fAG and cAG
explore the relations and complementarity between AEs and
AR. Nodes in each LcG are fully connected and modelled us-
ing a 3-layer gated graph convolutional network (GCN) [16].

Attention-based node fusion. The fAG outputs 24 AR-
aware fAEs (E24) node representations (marked as fAG-E24),
while fcG outputs 24 cAE-aware fAEs node representations
(marked as fcG-E24). Both fAG-E24 and fcG-E24 describe
the same target E24 enriched by related context information in
different perspectives. Hence, MLGL fuses the common in-
formation between these nodes by attention mechanism [17].

Attention(Q,K,V) = softmax(QKT/
√
dk)V (1)

where V=K, and dk is K’s dimension. Here, Q acts as an
index to adjust V. The attention output is mainly based on
V, so a more informative V will lead to better attention re-
sults. For the E24 nodes, fAG-E24 learns E24 with 1 AR
node, but fcG-E24 learns E24 with 7 cAEs nodes, so fcG-
E24 will contain more context information. For fusing E24
nodes, Q is fAG-E24, K is fcG-E24, that is, using the AR-
aware information to adjust the pure-AE information. For
fusing the E7 nodes, Q is cAG-E7, and K is fcG-E7. For
fusing the AR1 node, Q is cAG-AR1, and K is fAG-AR1.
Similar to Section 2.1, fused nodes are fed into the following



1-unit linear layer, and a loss is used to enhance the learn-
ing of the corresponding semantic information. Losses at
level 2 are L4=BCE(pl2f24, yf24), L5=MSE(pl2ar, yar),
and L6=BCE(pl2c7, yc7), where pl2f24, pl2ar, and pl2c7 are
the predictions of fAE, cAE, and AR at level 2, respectively.

2.3. Global context-aware graph (GcG)

The GcG comprehensively considers the semantic informa-
tion of fAEs, cAEs, and AR derived from multiple LcGs.
The GcG is also modelled by a 3-layer GCN to represent its
nodes and global relations between nodes. Global context-
aware node representations are fed into the following 1-
unit linear layer, and a loss is used to complete AEC and
ARP tasks. Losses at level 3 are L7=BCE(pl3f24, yf24),
L8=MSE(pl3ar, yar), and L9=BCE(pl3c7, yc7), where
pl3f24, pl3ar, and pl3c7 are predictions of fAE, cAE, and AR
at level 3, respectively. To perform end-to-end training for
MLGL, the final loss is: L=

∑9
i=1 λiLi, where λi is the pa-

rameter for weighting losses during training, fixed to 1 in our
experiments. The losses at levels 1 and 2 enable the model
to maintain semantic-related information while learning in-
termediate representations. However, the losses at level 3
correct the predictions of MLGL from a global perspective.

3. EXPERIMENTS AND RESULTS

3.1. Dataset, experiments setup, and metrics

We use the public dataset DeLTA [14] for experiments, which
has 2890 15-second binaural audio clips. Each clip has labels
of fAEs and the corresponding AR (continuously from 1 to
10). Following [6], the labels of 7 classes cAEs are derived
from the labels of 24 classes fAEs. The training, validation,
and test sets contain 2200, 245, and 445 clips, respectively.

The log-mel energy with 64 banks [8] is used as acoustic
features, with a Hamming window of 46 ms with 1/3 overlap
between neighbouring windows. Dropout and normalization
are used to prevent over-fitting of models [18]. A batch size of
64 and AdamW optimizer [19] with a learning rate of 0.0005
are used to minimize the loss. Models are trained on a Tesla
V100 GPU for 400 epochs. Dataset, code, and models are
available on the webpage (https://github.com/Yuanbo2020/MLGL).
Accuracy (Acc), F-score, and threshold-free AUC [20] are
used to evaluate the classification results of AEC. Mean ab-
solute error (MAE), mean squared error (MSE), and R2-score
(R2) [21] are used to measure the prediction results of ARP.

3.2. Results and analysis

Performance of different levels of prediction. The pro-
posed MLGL has 9 losses at 3 levels, responsible for different
roles. In Table 1, it can be observed that good predictions
from all levels have been achieved for both the 24 classes
of fAEs and the 7 classes of cAEs, implying that level 1 of
MLGL performs well in capturing the semantic representa-
tions of base nodes. The attention-fusion of graph-enriched

representations, further improves its performance for human-
perceived ARP. This implies that representations of related
nodes are enhanced in level 2 graphs. Finally, the predictions
at level 3 are improved in both AEC and ARP. This reveals
that node representations optimized in LcGs are beneficial
for constructing a more accurate GcG. Note that the DeLTA
dataset does not have labels for coarse-grained AEC, and cAE
labels from [6] without human validation cannot be evaluated,
so later, by default, AEC will be the fine-grained AEC.

Table 1: Multi-level predictions of MLGL for AEC and ARP.
Output Fine-grained AEC Coarse-grained AEC ARP
Level Acc. (%) AUC Acc. (%) AUC MSE MAE R2

1 91.91 0.918 84.72 0.910 1.062 0.767 0.452
2 91.90 0.920 84.98 0.910 0.964 0.717 0.502
3 91.96 0.921 84.94 0.912 0.940 0.706 0.515

Model parameters and size. To simulate a realistic use case,
Table 2 shows the inference time from loading the raw audio
clip, extracting features, feeding them into the model, to get-
ting predictions. Compared with HGRL, params of MLGL
are reduced by (92.3-4.1)/92.3×100%≈96%, and the model
size is reduced by about 95%, while MLGL still improves
predictions of ARP and slightly improves AEC.

Table 2: Comparison of HGRL and MLGL in detail.

Model Params Model Inference AEC ARP
(M) Size (MB) time (s) Acc. (%) AUC MAE R2

HGRL 92.3 353.0 0.531 91.71 0.901 0.802 0.458
MLGL 4.1 16.0 0.448 91.96 0.921 0.706 0.515

Comparison of fusion methods. At level 2, different en-
riched representations of the same target node are fused by
attention to enhance the common information between node
representations learned from different local contexts. Specif-
ically, two embedding vectors (denoted as EV1, EV2) of the
same node are fused. Table 3 explores alternative fusion
methods to investigate their impact on the proposed model.

Table 3: Results of different fusion ways at level 2 of MLGL.

# Fusion AEC ARP
Type Acc. (%) F-score (%) AUC MSE MAE R2

1 Addition 91.67 67.96 0.897 1.247 0.846 0.356
2 Concat 91.68 68.67 0.903 1.148 0.818 0.407
3 Hadamard 91.73 68.58 0.908 1.282 0.872 0.339
4 Gating 91.75 68.11 0.907 1.141 0.813 0.411
5 Attention 91.96 68.36 0.921 0.940 0.706 0.515

In Table 3, #1 refers to the addition of two vectors, while
#2 refers to the concatenation of two vectors, which is then
fed to a linear layer. Therefore, in #2, an extra layer is added
with respect to #1. #3 performs the Hadamard product of
two vectors. Similar to gated linear units [22], #4 utilizes
the gated output of EV2 to condition EV1, (W1 × EV1 +
b1)⊙σ(W2×EV2+ b1), where σ is a sigmoid function, ⊙ is
element-wise product, W and b are learnable weight and bias,
respectively. Overall, the AEC performance of these fusion
methods is similar, while attention-based fusion improves the
score on threshold-free AUC. For ARP, the attention-based
fusion significantly improved the scores on MSE, MAE, and
R2. Please see the webpage for source code and models.



Fig. 2: (a) Correlation between node embeddings of multiple LcGs. (b) Correlation between node embeddings of the GcG.

Comparison to other methods. We compare the perfor-
mance of models in Table 4, where the results of CNN, CNN-
Transformer, PANNs, and HGRL are all taken from [6]. Com-
pared with these models, MLGL, despite using much fewer
parameters, achieves better results in both AEC and ARP,
with MSE less than 1, and R2 greater than 0.5 for ARP.

Table 4: Comparison of different models on DeLTA dataset.

# Model Param. AEC ARP
(M) F-score(%) AUC MSE MAE R2

1 CNN 0.8 55.05 0.891 1.675 0.997 0.135
2 CNN-Trans. 1.6 58.66 0.851 1.445 0.966 0.254
3 PANNs 79.7 63.86 0.903 1.162 0.858 0.400
4 HGRL 92.3 67.91 0.901 1.049 0.802 0.458
5 MLGL 4.1 68.36 0.921 0.940 0.706 0.515

Explaining how the model works. To study the ability of
LcGs to capture relations between nodes, and whether the
GcG can model three kinds of semantic nodes in one graph,
Fig. 2 visualizes the Pearson correlation coefficients [23] be-
tween node embeddings on all the test audio clips. In Fig. 2,
the correlations between the nodes in fcG successfully match
the associations of fAEs to cAEs in the DeLTA dataset. The
correlations in the fAG indicate that motorcycle, bus, and horn
are the most likely sounds to cause people annoyance, while
rustling leaves and bird tweet sounds are the least likely to be
annoying. The cAG box shows that vehicles sounds are more
likely to annoy people, while animals sounds are not. These
LcGs with separate motivations perform well in capturing the
semantic relations between internal nodes.

In Fig. 2 (b), the GcG aligns all the semantic nodes us-
ing one graph. HGRL [6] has similar results, but the corre-
lation of nodes in Fig. 2 (b) is significantly higher than that
of HGRL. This means that MLGL can model different se-
mantic nodes and their relations from a global view, resulting
in better performance on AEC and ARP tasks, as compared
with HGRL, because MLGL has nodes with explicit seman-
tics and uses local context-aware graphs to optimize the node
representations. For a clearer Fig. 2, please see the webpage.
Statistical significance of correlations. For the results in
Fig. 2, Table 5 further tests their significance. Due to limited
space, Table 5 shows partial AEs. We first assess the distribu-
tion of MLGL’s predictions with a Shapiro–Wilk test. Since

the predictions are not normally distributed, Spearman’s rank
(Spearman’s rho) [24] correlation coefficient (CC) is used.
Note: ** indicates statistical significance at the 0.001 level.

Table 5: Spearman’s rho correlation coefficients for AEs with AR.
# AE CC w/ AR # AE CC w/ AR # AE CC w/ AR
1 Bus 0.504** 7 Speech 0.193** 13 General traffic 0.391**
2 Car 0.199** 8 Children 0.173** 14 Motorcycle 0.374**
3 Rail 0.329** 9 Shouting 0.443** 15 Screech brakes 0.488**
4 Bells 0.458** 10 Bird tweet -0.522** 16 Rustling leaves -0.585**
5 Horn 0.653** 11 Dog bark 0.029** 17 Ventilation 0.085
6 Water -0.097** 12 Aircraft 0.415** 18 Other 0.011

In Table 5, several AEs, namely Aircraft, Bus, Screech-
ing brakes, Bells, Shouting, and Horn exhibit strong positive
correlations with AR, which indicates that an increase in the
occurrences of these AEs increases the level of annoyance.
In contrast, AEs like Bird tweet and Rustling leaves show
strong negative correlations with AR, implying a decrease in
annoyance when these are present. These statistical results
from the proposed MLGL are consistent with earlier human-
perception-based soundscape research [3][12].

4. CONCLUSION

We have presented the MLGL to identify audio events (AEs)
generated by diverse environmental sound sources and pre-
dict human-perceived annoyance rating (AR) in real-life
soundscapes. Experimental results show that: 1) Lightweight
MLGL with only 4.1 M parameters performs AEC and ARP
tasks as well as previous heavier models; 2) Local context-
aware graphs with different motivations perform well in
capturing semantic nodes, which helps the global-view graph
to model the nodes and their relations; 3) Statistical analysis
of MLGL results shows that some AEs are closely related
to human AR, which is consistent with observations from
previous soundscape research based on human perception.
Future work will deploy MLGL on edge devices and measure
differences in real applications to assist soundscape research.
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